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A PROOF OF FOUR-COLORING THE EDGES OF A 

REGULAR THREE-DEGREE GRAPH 

A graph G consists of a finite set V of points called 

vertices together with a set E of unordered pairs of vertices 

called edges.  Hote that this definition does not permit multiple 

edges or loops. A subgraph 3'  of a graph G has vertices 

V' ^. V and edges E' £1 E , where  [v , v ] e E' only for 

v. e V  and v_ e V .  Coloring the edges of a graph means 

assigning to each edge a color so that no vertex is incident to 

two edges of the same color. A simple path is a finite sequence 

of distinct vertices v.,,..., v  such that [v. . v. ., ] e E for 
1   '  n i '  i+l 

i = 1,..., n -■ 1 . A  connected graph has a simple path between 

every pair of vertices, and a graph not connected consists of con- 

nected components.  In a connected graph, a bridge is an edge such 

that its removal from E causes G to not be connected. The 

degree of a vertex is the number of edges Incident to that vertex, 

and a regular graph has the same degree at each vertex. 

Coloring the edges of a regular J-degree graph is of special 

interest because the ^-color conjecture is equivalent [k]  to 3- 

coloring the edges of a planar, regular 5-degree graph which is 

connected and without bridges.  Edges of a connected, regular J- 

degree graph can easily be colored with 5 colors and can be colored 

with 4.colors provided there is no bridge [1].  Theorem 2 states 

that the edges of any regular, 5-degree graph can be colored with 

k  colors. This result 'also follows directly from a result on 
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colorir.g the nodes of a graph [2],  "but the method used here is 

of interest "because it gives an algorithm whose length depends 

linearly on the size of the graph, and it is" used to characterize 

the regular 3-degree graphs in an inductive manner as given in 

Theorem 1.  Theorem 2 does not depend on Theorem 1.  The method 

is similar to "splits" first used by Frink [3]. 

3 
A regular 3-degree graph having n vertices must have 5 n 

edges, and hence n must be even.  There is one such graph having 

k  vertices and two having 6 vertices.  They are shown below with a 

3-coloring of the edges: 

FIGURE 1 

An H-tree is defined as a graph with 5 edges and b vertices 

having degrees 3» 3> 1> 1» 1» and 1. 

LEMMA 1.  Any connected, regular graph of degree 3 with n 

vertices,  n ^> 6 , has an H-tree as a subgraph. 

PROOF:  For any vertex v  , there are three distinct edges 

e2 " [V0 ' V2] ' e3 = 
incident to v0 , say e = [v , v ] 

[v0 . v ] .  Consider the edges with both ends in (v  , vQ , v.) ' 
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There cannot be 3 such edges, because there can be no con- 

nected component with k  vertices.  Consider the case of 2 such 

edges, say e^ = [^ , Vg]  and. e^ = [Vg , v_] (Figure 2(a)). 

Then v  is incident to another edge e^ = [v, , V^] , v^ 

different from VQ , V- , V- , and v  . .There are two more 

edges incident to v, , e = [v. , v ]  and eg = [v^ , v^] . 

Furthermore vc  and vr are different from v  , v  , v 
5      6 u   1   £f 

because they already have degree J.  Hence e  , e^ -6 ' D7 

and e0  constitute an H-tree. 
o 

Consider the case of exactly one edge, say e, = [v  , v ] , 

with both ends in (v , v2 , v ) (Figure 2(b)).  Then v1 is 

incident to two other edges,  e = [v1 , v^]  and e^ = [v1 , v ] . 

Furthermore, v,  and v  are different from V
Q > v1 > V2 ' and 

v  because there is no edge from v  to v  or v  .  Hence 
3 ±      ^      3 

e  , e  , e  , e,. , e, ■ form an H-tree.  In case there is no edge 1'2'3'5'b 

with both ends in {v , v  , v ) , v  Ls incident to two other 

edges ;  e^ = [v1 , V^] and e =   [v1  ,  v  ]   , and then e1 , e^  , 

e  , e, , e  form an H-tree (Figure 2(c)).  Thus Ismma 1 is 

Va  v0  Vj 
0—r—Q——0 
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Consider an H-tree in G with vertices vo * vi » v2 ' V5 ' 

v, , v  and edges e^^ = |>0 , v^ , e2 = [v0 , v2] , e^  = [v0 , v^] 

e^ = [vj^ , TJ , e = \y^ , v^]   (Figure 2(c)). The H-tree is 

called acceptable if no two edges of G with one end in {v , v ) 

and the other end in (v. , V ) are incident to the same vertex. 

LEMMA 2. Any connected regular graph G of degree 5 on n 

vertices,  n ^ 8 , has an acceptable H-tree as a subgraph. 

PROOF; From lemma 1 there is an H-tree in G . Denote the 

vertices and edges as in Figure 2(c) and consider the edges with one 

end in (v , v } and the other in (v , v ) . There cannot be 

it- such edges because then there would be a connected component on 6 

vertices and n ^ 8 for G . 

Consider first the case of 3 such edges, say  [v^  ,  v^]  is 

not an edge of G (Figure 3(a)),  Let . eg ■ [Vg ., ▼_] ,.• and let 

e = [v , v,] be the other edge incident to ■ v .  l£t eg = 

fv, . v 1 and e = [v,. . v«] be the.other two edges incident to 
■■6.  7       9   o   o 

v, . . Then v  and VQ are different -from vo ' vi ' v2 ^ v^ ' v5 ' 

because they already have degree 3. Then e2 , e^ , e , eg , e^ 

form an acceptable H-tree, because all .the edges with one end in 

(vn > vtJ  ha-v6 tlie other end in {v , v , v ) . 

Consider now the case (Figure 3(b)) of 2 such edges and suppose 

they are incident to the same vertex, say [v , v^] , [v , v ] . 

If they are not incident to the same vertex, or if there is only 

one such edge, then the H-tree is already acceptable.  Now Vg  is 

incident to two other edges e^ = [Vg , v^] ,•_"[▼, v] , 

where v, and v  are different from v
0 > "^ > v2 » V5 ^ % ' 

i. 



and v .  Then e  , e  , e  , e^ , e   form an acceptable  H-tree 

because all the edges with one end in  {v.^ , v }  have the other 

in (v0 , vu , vs) . 

V7n Vs. 

(a) (b) 

■ 

FIGURE   5 

'let an acceptable    H-tree  in    G    be  denoted as   in the  definition   , 

and Figure.2(c).     A new graph    G'   ,   called the     H-reduced graph,   can 

he fottned by deleting    v0    and  [y^    from    V    and    e1   ,   e^   ,   e^  ,   eh ,  ■ 

e       from    E    and adjoining either    fe£ =   [Vg   ,  y. ]     and    e^ = 

[v     ,  v  ]     or    e£ =   [v     ,  V ]     and    e^ =   [v^  ,   v^]     to     E    depending 

on which pair is not in    E  /■   In the proofs  of  theorems 1 and 2,  an ac- 

ceptable    H-tree  in    G    will be assumed to be  denoted so.; that    e^ 

and    e'     are adjoined to form    G'   .   _   '. '   # •  .' 

For any graph    G    having two, edges . e^^ =   [vg   ,   v^]   ,   e2 =   [v^., 

v      distinct  vertices,   a new graph    G'   , v •]    with    v2  ,  v5 ,  vJ+ 

called the    H-enlarged graph can be found by deleting     e1    and    e2 

'from    E  ,  and'adjoining    v^    and    v^    to    V    and either  the   five 

edges     [^  ,.v£]   ,   [vf'   ,  Vg]   ,   [v^  ,  v5]   ,   [v£  ,   v^]   and     [v£  ,^ 

or the five edges     [v^  ,  v£]   ,   [v^  ,  Vg]   ,   [v^   ,  v^]   ,   [r£   »  Tjl   » 

[v'   ,  v, ]   .     Either enlargement  can always be  done provided    V2   '  ^3  ' 
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v, . v^ are distinct vertices. 
4   5 

THEOREM 1. For n ;> 6 ,, every connected, regular 3-degree 

graph G on n + 2 vertices is an H-enlargement of a cormectedj 

regular J-degree graph G' on n vertices. 

PROOF: From lemma 2,   there is an acceptable H-tree in G ,, 

Clearly the reduced graph G' is also a regular 5-degree graph. 

Suppose G' is not connected. Then there are two vertices v and 

v1  of G' with no simple path between them. By G conneoted, 

there is such a simple path in G . The path mast include v  or 

v  because otherwise it is a path in G' . 

Case 1. Suppose it includes only v (Figure V.a)).  Then 

there is no simple path from v0 to v  in G that does not 

include v  or v  because if there were^ we could use it in 

place of v , v , v  and find a simple path from v to v' 

in G'. Hence, there is no simple path in G from v to v , 

or from v_ to v. , or from v. to v,. that does not include 

V    O^  V 
0      1 

Case S.  Suppose now the path includes v0 and v. , say 

VQ appears first (Figure l»(b)). If v- and v  are not ad- 

jacent in the path, we can omit the vertices In between to obtain 

another simple path from v to v'  in G with v  and v ad- 

jacent;.  Let v  be the vertex before v . Then if the path 

has Y2   '  VQ  '  Y±  '  YK '  Ve Can :£'orm a P61*11 in S1 by using 

v2 , Vj^ in place of v
2 > VQ ? ^ > % •  Hence the path has 

V2 ' V0 ' Vl ' Vl5 "  NoWj' J"3* as in case 1> there is no simple 
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path in G from v2 to v^     that does not include v0  or v , 

and hence there is none from v  to v , or from v  to v   or 
^ J 3     4' 

from v^ to v  that does not include v  or v  . 

Hence, in either case [Vg , v^ and ^ , v^] are not edges 

of G . Consider the H-reduction in G using the same H-tree and 

adjoining the edges [Vg , v^ and ^ , v^] instead of [v , v ] 

and [v3 , Vj] . This H-reduction is the same as the preceding one 

with v4 and v5 interchanged. Hence, if this H-reduced graph is 

also not connected, then there is no simple path in G from v to 

v^ or from v^ to v^     not including v  or v  . 

Therefore, if neither H-reduced graph is connected, then there 

is no simple path in G from ^    to ^  , v^ , or ^     not including 

■VQ and v  . 

(C) 
FIGURE k 

Consider, then, the other two edges at v  in G , say e = 

[v     ,   v  ]     and :
7 "   [Vg  ,  v ]   .     By the above. v,     and    vr     are 



different from v
0 ; ^ * ^ ^ v, ^ v   and v , and there are no 

edges fron v6 or v^ to v
0 . ^ , v , v^ , or v . Hence, e , 

e2 ' e3 * e6 ' e7 fo:cm  an acceP'ta'ble H-tree (Figure 4(c)).  If 

neither of its reduced graphs is connected, we can continue along the 

other two  edges of v^ . In this way we can continue as long as no 

connected reduced graph is found, and at each step two new vertices 

will be found because at every step there is no simple path from the 

new vertices to ajay of the old ones except using edges already en- 

countered.  But the vertices of G are finite in number, so eventu- 

ally a connected reduced graph G'  is found. 

THEOREM 2.  The edges of any regular 3-degree graph G can be 

colored with k  colors. 

PROOF;  The theorem is true for G having 4 or 6 vertices 

(Figure l).  Suppose the theorem is false. Then there is a smallest 

graph G for which it fails.  G is connected because if not, one of 

its components, which has fewer vertices than ■ G , cannot be 4-colored. 

G has 8 or more vertices, so by lemma 5 has an acceptable H-tree. 

Note that G' need not be connected, so only methods of lemmas 1 and 2 

need be used to find an acceptable H-tree. The edges of the reduced 

graph G'  can be it-colored.  Denote the colors by a, ß, r , B • 

Suppose e^ = [v2 , v^] and e^ = [v , v ] are different colors, 

say a and ß (Figure 5(a)), in the coloring of G' . Then in G 

color all the edges except e , e , e, , e, ,6,. the same color as 
A   <:   3   4   5 

in G1 .  Color e 
'2. and e,  a , and e  and e^ ß. Color e, r • 

•* 5      5 1 
Suppose  e'  and e'  are colored the same color, say a 
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Then color e  and e,  a Now color e  , the color not incident 

to v , and color e  the color not incident to v  .  Then e  can 

be colored the fourth color not used to color e0 , e , e. , e 
<i    3    ^    2 

(Figure 5(h)) . 

(a) (b) 
FIGUHE 5 
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